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Abstract Miscible displacement of a more viscous finite layer in porous media is simulated by
means of high accuracy numerical schemes. Viscous fingers on the trailing front where the
mobility ratio is unfavorable are found to catch up, however they never break through the stable
leading front. Two stages of fingering orientation are observed. At an earlier time when the
influences of finite thickness of the layer ave not yet fully vealized, the fingers move forward with
the similar features to the conventional fingering findings. However, these fingering patterns are
redirected upstream after the arrival of most of fingers to the leading front. The leading front
remains stable with strong dispersion effects and moves nearly constantly with original displacing
velocity. The growth rate of the layer thickness depends strongly on the viscosity ratio.

I. Introduction

The subject of porous media flows involving fluids of different viscosities has
been studied extensively for several decades. Accurate predictive abilities for
displacements in porous media represent a prerequisite for addressing a host
of problems in fields such as hydrology, enhanced oil recovery or underwater
pollution contamination. The exploration of fingering instability governed by
the effects of viscosity contrast has been an ongoing research subject as well,
dating back to the pioneering experiments of Hill (1952) and Saffman and
Taylor (1958). Traditionally, most of the analytical, experimental and
numerical investigations in this area have been performed for the
displacement process on a semi-infinite length of more viscous environment,
cf. the recent reviews by Homsy (1987), Yortsos (1990) and McCloud and
Mabher (1995). However, the finite layer confined by the less viscous fluids,
present in many applications, to our knowledge has not yet been explored.
The catch-up of viscous fingers triggered on the trailing edge, where the
viscosity ratio is unfavorable, might lead to interesting mechanism such that
if the fingers would break through the layer and evolve channels within it or
growth of the fingers are subdued on the frontal boundary. The main
objective in the present investigation lies in the exploration of the influences
of layer’s finite thickness and fingering patterns of the flow field. We pursue
this goal by means of highly accurate direct numerical simulations, which
resolved all the relevant length scales without introducing significant levels
of numerical diffusion.
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As far as the miscible displacement of layer of finite thickness is concerned,
some guidance can be obtained from simulations of infinite flows. A first
known finite difference algorithm for simulating an unstable miscible
displacement was developed by Peaceman and Rachfird (1962). More recent
high-accuracy time-dependent simulation by Tan and Homsy (1988) provides
more detailed information. Using a Fourier spectral method, Tan and Homsy
(1988) explored the miscible fingering dynamics as a function of the mobility
ratio and the Peclet number, and found good agreement with the growth rates
of their earlier linear stability analysis (Tan and Homsy, 1986). The nonlinear
mechanism, such as spreading, shielding, merging and tip-splitting were
observed and can be best understood in terms of the underlying vorticity
dynamics. The finite difference simulations by Christie and Bond (1987) and
Christie (1989) exhibited similar fingering dynamics and yielded good global
quantitative agreement with experimental recovery data by Blackwell et al.
(1959). Some other numerical simulations, e.g. Sherwood (1987), Fayers et al.
(1992) and Bratvedt et al (1992), choose not to account for the molecular
diffusion, so that the computational grid has to provide the short-wavelength
cutoff via numerical diffusion. Rogerson and Meiburg (1993a) extended the
stability analysis for flows involving shear across the interface, and observed a
stabilize effect by the shear. This shear stabilization was confirmed by the
same authors (Rogerson and Meiburg, 1993b) numerically. More recently,
Lajeunesse et al. (1999) studied the downward displacement at very high rates
for diffusive effect to be negligible both experimentally and theoretically. A
formation of a two-dimensional tongue of injected fluid resulted under certain
conditions on the viscosity ratio and flow rate. Ruith and Meiburg (2000) and
Camhi et al (2000) simulated the displacements with gravity override. The
authors discovered that the coupling between viscosity and gravity is
predominantly one way, in that the gravity can amplify the viscosity vorticity,
but not vice versa. Chen et al. (2001) studied the motion of miscible droplet. The
droplet shape was investigated and also the influences of the dynamic surface
tension (Korteweg stresses). They reported the negative frontal curvature was
found to stabilize the unfavorable mobility ratio on the more viscous droplet.

Other work highly relevant to the present study is that dealing with when
the viscosity-concentration relationship is non-monotonic, investigated by
Manickam and Homsy (1993, 1994, 1995) and Pankiewitz and Meiburg (1999).
The non-monotonic viscosity variation develops an unstable zone followed
downstream by a stable zone. This downstream stable zone, which is similar to
the leading mixing front with favorable viscosity ratio in present situation, acts
as a barrier to the growth of fingering instabilities. Manickam and Homsy
(1993) found that typical quadrupole structures of the flow field resulted from
the non-monotonic viscosity profiles, as opposed to the dipole observed for the
monotonic variation. In general, according to Manickam and Homsy, the
instabilities are more pronounced as the end-point viscosity contrast becomes
more unfavorable; the increase of maximum viscosity stabilizes displacements
with an unfavorable end-point viscosity contrast, while destabilizing with a



favorable one. The results of stability analysis are confirmed by the followed
up numerical simulations, cf. Manickam and Homsy (1994). The phenomenon
of “reverse fingering”, during which the fingers tend to propagate backwards
when viewed in a reference frame moving with the front, were observed in the
simulations caused by the barrier to the forward growth of fingers. Similar
analysis and simulations in the geometries of radial flow and quarter five-spot
configuration were studied by Pankiewitz and Meiburg (1999). Contrasted to
rectilinear displacement, it was found that, for a given end-point viscosity ratio,
whether the overall viscosity contrast is favorable or not, an increase in the
maximum viscosity generally leads to a more unstable front. Manickam and
Homsy (1995) analyzed the cases of vertical flow with monotonic viscosity
profiles, and horizontal flows with non-monotonic viscosity profiles, and found
great similarities in the two situations. Reverse fingering was also observed in
a density-driven displacement with a favorable viscosity ratio.

Here, detailed miscible displacement simulations of a finite layer will yield
qualitative and quantitative information essential for correctly anticipating
groundwater hydrology, as well as for assessing the effectiveness of strategies
for groundwater contamination. Control parameters, such as viscosity ratios
and dimensionless flow rates (Peclet number) are simulated systematically.
The outline of this paper is as follows. After formulating the physical problem
and providing a brief review of the computational technique in Section II,
Section III will focus on the computational results and their interpretation.
Conclusions will be provided in Section IV.

II. Physical problem and governing equations

We consider the physical problem of time-dependent displacement of a more
viscous miscible fluid confined within a layer with width W in a rectangular
domain, such as the one depicted in Figure 1. The layer is displaced by the
surrounding less-viscous fluid with a uniform velocity U. The governing
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Note: In a rectangular domain, a finite thickness layer is displaced by a less viscous surrounding
fluid with a uniform velocity U
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equations in a homogeneous porous medium of permeability % take the
forms:

V-u=0 (1)
Vp=— % u 2)
% + V- (uc) = DV-. (3)

Here, u denotes the velocity, ¢ the concentration of fluid in the layer, D the
diffusion coefficient and p the pressure. Viscosity is indicated by wu. The
expression of a scalar diffusion coefficient D represents a relatively crude
approximation of real dispersion mechanism inside a porous medium. However
for lack of a better model, as discussion and references given by Petitjeans
et al. (1999), a scalar diffusion coefficient is the best to be employed for now, in
order not to occlude the identifiable physical mechanism at work.

In order to render the governing equations dimensionless, we take the
vertical extent H of the flow domain as the characteristic length scale and % a
typical permeability value. The nominal displacing velocity U serves as the
velocity scale, thus time scale H/U. By furthermore scaling with viscosity of
layer p;, where the subscript L indicates the fluid in the layer, and pressure
wu; UH/k, we define the dependence of viscosity-concentration has the form
(Tan and Homsy, 1988; Chen and Meiburg, 1998a, b):

p(c) = e, (4)
which R is the viscosity control parameter that determines the viscosity ratio as

e®. The momentum equation can be recast into a vorticity (w) and
streamfunction (v) formulation (Ruith and Meiburg, 1999):

ov  Ou
=0 o ©)
_ oY o
”_1+_8y S U= (6)

It should be noticed that the streamfunction mentioned here represents purely
the component caused by the generation of vorticity in the original irrotational
He-le-Shaw flow. In order not to confuse with the overall streamfunction that
includes uniform base flow, we refer to perturbation streamfunction in the
following. The dimensionless momentum and concentration equations are
obtained:

Vi = —w (7)



w=—RVi- Ve (8)

dc 1,
E%—U-Vc—Fch 9)
where the Peclet number Pe is the form:
UH

Boundary conditions are prescribed as follows (Ruith and Meiburg, 1999):
o ow dc

x =wm/out flow : o O %:0, a:o (11)
oc
=405 =0, —=0. 12

The numerical code is largely identical to one used for earlier investigation by
Ruith and Meiburg (2000). The Poisson equation of streamfunction is solved by
a spectral method with a Galerkin-type discretization of cosine expansions in
the stream-wise direction, accompanied by sixth order compact finite difference
in the normal direction. Third order Runge-Kutta method is applied to obtain
the temporal concentration distribution. The code is validated by comparing
the growth rates with the values obtained from linear stability theory in a plane
front with semi-infinite layer, i.e. W = oco. More details on the implementation
of these schemes are provided by Meiburg and Chen (2000), as well as Ruith
and Meiburg (2000).

III. Results
We start by describing the temporal and spatial evolution of a reference case, in
order to identify the dominant mechanisms at work. Subsequently, the values
of the governing parameters will be varied individually, in order to elucidate
their effects.

III A Reference cases

A representative calculation for R = —2.5, Pe = 2000 and W = 0.125 is
described. The computational domain extends over the range of (~1,1) and the
rear contacting mixing interface is placed at x = —0.75. The R-value indicates
that the layer is displaced within an about 12 times less viscous environment.
Figure 2 displays the time sequences of the concentration fields. At the rear
mixing interface, the mobility ratio is unfavorable, and as a result vigorous
fingering instability is observed and less viscous fluids penetrate into the more
viscous layer. These fingers initially display some of the familiar dynamic
behavior, ie. splitting, merging, etc., cf. Tan and Homsy (1988). As these
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Figure 2.
Reference case:

PE =2,000; R =-25and

W =0125
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Note: Concentration contours are shown for times /=0.4, 0.8, 1.2 and 7 =1.523. Conventional
forward fingers are seen at t=0.4. However, reverse fingers evolve after the arrivals of fingers
to leading front after t=0.8

penetrated fingers proceed near the leading interface, instabilities are subdued
and penetrated fingers never break through the interface. The leading interface
moves stably with a nearly constant speed. The stable leading interface can be
understood by its viscosity contrast. Locally, the stable mobility ratio results in
a flat leading front that moves slower than the less viscous penetrating fingers
catching from behind. A very thin area with significant concentration gradient
of more viscous fluid is sandwiched by the penetrating finger and the
surrounding less-viscous fluid. The high favorable concentration gradient
provides strong stable effects, and prevents the continuous growth of
fingerings. The penetrating fingers are forced to decelerate and allow more
time for dispersion to proceed. Consequently, a highly-mixed region is formed
on the leading front. The mixture in the region is more viscous, and therefore
displaces the surrounding fluid in a stable path.

One interesting point is that fingering reorientation is observed after most
of the penetrating fingers reach near the leading interface. In situations where
the influences of finite width are not significant, such as conventional semi-
infinite displacements (Tan and Homsy, 1988; Ruith and Meiburg, 1999) or



wider layer W = 0.5 at t = 0.8 shown in Figure 3, the fingers move forward
with round tip fronts and relatively irregular roots. The vorticity peaks, with
a typical dipole structures, appear at the fingers’ tips with similar shapes to
the concentration images. The perturbation streamlines show a double eddy
pair within each finger and face downstream. At current situation of thin
layer, while a few fingers penetrate nearly the leading interface at early time t
= 0.4, the influences of finite thickness have not yet been fully realized by the
flow. The flow pattern basically resembles the conventional forward
fingerings as described above. However, once most of fingers have reached
the leading interface at t = 0.8, the stable front resists the continuous
penetration of less viscous fluids and force these forward fingers to reverse
their orientation backward, or the reverse fingers which also were observed
by Manickam and Homsy (1994, 1995) in a non-monotonic viscosity profiles.
The vorticity contours, shown in Figure 4, clearly show that the local peaks
are located on the original fingers’ roots with the typical rounder shapes. The
generation of reverse fingers is even pronounced at later time t = 1.523 that
the vorticity distribution appears exactly the same as if the displacement
proceeds from the opposite direction. The formation of double-eddy pairs
facing upstream for the corresponding perturbation streamlines, also shown
in Figure 4, confirms the behavior of reverse fingering due to the finite
thickness of more viscous layer.
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Note: Concentration (top), Vorticity (middle) and perturbation streamfunction (bottom) fields
at time=0.8. Features of conventional forward fingers, that both the pairs of vorticity peaks
and eddies of streamlines occur at the downstream direction, are observed
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Figure 3.
Pe =2000; R =-25
and W =05
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Figure 4.

Reference case: vorticity
and perturbation
streamfunction fields

at times ¢ = 0.8 and

t = 1523

0.5 —
z —
£ 0 _
o -
> -
-05 —
-1 -0.5 0 0.5 1
0.5 —
g =
g
= 0 S
s =
= &=
<
-0.5 =2
-1 -0.5 0 0.5 1
05 o
- =
- P
£ 0 =
2 s
-0.5 —
-1 -0.5 0 0.5 1
05 —
7] ==
(0]
g ° S
= [EaN
7] ®®<D
-0.5 =
-1 -0.5 0 0.5 1

Note: Features of reverse fingers, that the pairs of vorticity peaks and eddies of streamlines
face backward, are clearly seen

Some interesting comparisons can be made between the current findings of
reverse fingers to those found in non-monotonic viscosity profiles, cf.
Manickam and Homsy (1994, 1995). The basic mechanism of viscous
stabilities are similar for both cases, in which a maximum viscosity is placed
in between less viscous regions. At the back region of maximum viscosity is a
viscous unstable zone, while the front is stable. Thus, similar reverse
fingering behaviors resulted. However, the non-monotonic viscosity profiles
differ from the current situation on concentration distribution, therefore the
effects of diffusion as well. Under the non-monotonic viscosity profile, the
unstable-stable distribution of viscosity profiles exists at all times, as long as
concentration variation, and leads to the typical quadrupole structures on the
contacting front. On the other side, at present condition, even the leading
front, in which the variation of viscosity is non-monotonic due to the
sandwiched concentration distribution, acts as a barrier and triggers reverse
fingering; the diffusion quickly reduces the concentration gradients. Almost
no generation of vorticity is observed in this region. The growth of reverse
fingers takes place at the roots of the initially forward fingers, where the



viscosity variation is monotonic by definition. The structures of vorticity and
perturbation streamfunction appear the typical dipole formation.

The propagating velocity of the more viscous layer, that can be represented
by the process time #, when the concentration contour ¢ = 0.01 of leading front
reaches the outflow boundary, and dispersed layer width W, which is defined
as the distance between the points at which average concentration ¢, = 0.01, in
which:

0.5
Cd(x) = / C(xay)dyy (13)

-0.5

represent quantities of significantly practical interests regarding pollution
contamination. Compared to #, = 1.524 (not shown here) for a passive
displacement, R = 0, the layer moves in almost the same path with £, = 1.523
at the present viscosity contrast. It reflects that the stable leading front
prevents the breakthrough of the penetrating fingers, and moves
insensitively to the viscosity difference on the trailing interface. Dispersed
width, normalized by initial width is depicted in Figure 5. For a stable
displacement process, the elongation of dispersed width is solely caused by
the diffusion within the mixing layer and should remain nearly the same. The
instability of trailing front leads to the penetration of viscous fingers at
current situation, dispersed width is therefore elongated. However, the
continuous growth of dispersed width reflects no breakthrough of the less

0 0.5 1 1.5 2
time

Note: The growth of 7, is faster at higher viscosity parameter R. Two stages of dispersed
width growth rate can be clearly identified for lower R= —1.5, that is smaller at earlier time
(up to about t=0.4), which reflects the continuous penetration of forward fingers. The development
of reverse fingers at later stage stretches the layer and causes a faster growth. These two regimes
are less distinguishable for higher R due to the sooner arrival of forward fingers to leading
front, therefore the earlier appearance of reverse fingers
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Figure 5.

Pe = 2,000 and

W = 0.125. The
temporal evolution of
dispersed layer width
W) for R = -15
(dash); —2.5 (bold) and
-3.5 (dash-dot)
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Figure 6.

Pe = 2,000 and

W =0.125. The
temporal evolution of
interfacial length L(f) for
7 = =15 (dot); —2.5 (bold)
and -3.5 (dash-dot)

viscous fluid. Of further interest, for example if chemical reactions between

the two miscible fluids are to be considered, is the length of the interfacial

region separating the two components, and defined by Chen and Meiburg
(1998a, b) as:

05 1 9e 0c 5.1

Lt:/ / )+ (2P dxdy 14

=] | (GF+G (14

and shown in Figure 6. L grows rapidly soon after that the displacement

triggers vigorous fingering instability on the trailing front. However, after

about ¢ = 0.3, the penetrating forward fingers start to reach the stable leading

front, fingerings are suppressed, for reasons stated above and strong

dispersion takes place. The mixing interfacial length declines significantly
due to the strong mixing within the layer.

Il B Effect of viscosity pavameter R

The influences of the viscosity parameter will be analyzed by conducting a
series of simulations with different values of R, while keeping the other
parameters at their respective values of the reference case. The typical
viscosity contrast in practical situation between the fluids can vary from
O(1) (R > —2.3), i.e. light chemical component and the groundwater, to
0O(10) (R < —2.3) such as heavy crude oil. For the case of a weak viscosity
contrast R = —1.5 (cf. Figure 7), the transition of fingering redirection is
even more apparent. The lower viscosity contrast causes the fingers to
move more slowly compared to the reference case. At f = 0.4, all the fingers
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2571 /
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Note: More rapid growth and higher maximum occur at higher R-value because of more
vigorous fingering instability at earlier times. However, due to the sooner arrival to the stable
leading front and stabilizing the forward fingers, the mixing interfacial length starts to decline
carlier for higher R-value
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Note: Concentration and vorticity fields at times /=0.4 and #,=1.525. Forward fingers and
reverse fingers can be identified at early and later times, respectively

have not reached the leading interface yet, and both the concentration and
vorticity fields appear to have the typical features of conventional forward
fingers, such as rounder tips with local maximum of vorticity dipole pairs at
downstream. After the fingers reach the leading interface, the fingers’
orientation is reversed, so that the vorticity dipole pairs face upstream, as
shown at ¢, = 1.525. More numbers and thinner reverse fingers are observed
for higher R = -3.5, Figure 8, and process time is about ¢, = 1.529. The
increment of dispersed width is found more significantly at larger viscosity
contrast, shown in Figure 5, that is, resulting from the more vigorous
fingering instability and thus quicker and stronger penetration of the less
viscous fluid. While higher growth rates of dispersed width result from
larger R-value, the process times are nearly the same for all the viscosity
differences, as the reason mentioned in the reference case. Two stages of
dispersed width growth rate can be clearly identified for lower R = —1.5.
The growth rate shows smaller at earlier time (up to about ¢ = 0.4), which
reflects the continuous penetration of forward fingers. The advance of
stable leading front, associated with the development of reverse fingers at
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Figure 7.
Pe =2,000; R =-1.5 and
W =10.125
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Figure 8.
Pe = 2,000; R = -35
and W = 0.125
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Note: Concentration and vorticity fields at times /=0.4 and 7,=1.529. Reverse fingers are more
pronounced at current higher viscosity ratio

later stage, stretches the layer and causes a faster growth. These two
regimes are less distinguishable for higher R due to the sooner arrival of
forward fingers to leading front, therefore the earlier appearance of reverse
fingers. Influences of various viscosity contrasts to the contacting interface
are displayed in Figure 6. More rapid growth and higher maximum occur at
higher R-value because of more vigorous fingering instability at earlier
times. However, due to the sooner arrival to the stable leading front of the
forward fingers, fingering instability is suppressed with significant
dispersion. The mixing interfacial length, that depends on the
concentration gradient by its definition, starts to decline at earlier time for
higher R-value.

1I1L.C Influence of dimensionless flow rate Pe

For a certain fluid combination, the value of Pe is directly proportional to the
global displacing flow rate. For a practical displacement process, the value of
Pe number based on pure diffusive effect could easily reach more than
millions. However, the more realistic dispersion, that is strongly related to



local velocity such as Taylor dispersion (Taylor, 1953) and model has not yet
been well established (Petitjeans et al., 1999), is considered, the magnitude of
Pe could be reduced extremely. Due to the reason as well as the limitation of
numerical ability, the range of Pe-value simulated here is not beyond 6x10°.
Depicted in Figure 9 are the concentration and vorticity contours for
Pe=1,000 at t = 0.4 and ¢, = 1.495. Compared to the reference case, less
fingering instabilities are triggered with more significant mixing. Different
fingering orientation can be also observed from the vorticity contours. While
the features of forward finger, that rounder vorticity peaks appear at leading
front, can still be partially identified at early time ¢ = 0.4, formation of
entirely reverse fingering behavior resulted at #, = 1.495. For higher
Pe = 6,000, more numbers of extraordinary fine structures and the apparent
reverse fingers as well, are observed as shown in Figure 10. These reverse
fingers are considerably longer and slimmer than the lower Peclet number
cases. The influences of Pe to the process times ?;, dispersed length W, and
interfacial length L are displayed in Figures 11, 12 and 13 respectively.
Longer process time is needed for higher Pe which represents larger flow rate,
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Note: The lower Pe-value leads to more significant mixing. The process time #, is earlier than
the reference case
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Figure 9.

Pe =1,000; R =-2.5 and
W = 0.125.
Concentration and
vorticity fields at times
t =04 and #, = 1.495
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Figure 10.
Pe = 6,000; R = -25
and W =0.125
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Note: Concentration and vorticity fields at times /=0.8 and #,=1.567. Slimmer and more
numbers of reverse fingers resulted from higher Pe

cf. Figure 11, for the range of Peclet values simulated here. It indicates the
movement of the stable leading front is characterized by the diffusion. With
nearly the same convective effect to the stable leading front, the nature of
stronger dispersion for the low Pe-value leads to the sooner arrival of leading
front to the numerical boundary. The increase of the dispersed width is
determined both by the convective elongation which characterizes the
fingering, and diffusive propagation. For convective effect, more significant
reverse fingering at higher Peclet number stretches the layer upstream. On
the other hand, the stronger diffusion at lower Peclet number increases the
thickness of dispersion area on the leading front. Even though the growth of
mixing length is higher for higher Peclet number, dependence is not very
significant, cf. Figure 12. The higher mixing length due to stronger reverse
fingering behaviors associated with longer process time at high Pe-value,
suggests a better displacement process in a lower Pe-value if pollutant
contamination of the least area, as well as the shortest process time are
considered. Interfacial lengths are found higher at larger displacing rates or
higher Pe, Figure 13, because of more vigorous fingerings and less mixings.
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Note: Longer displacement process time 7, is found at higher Pe-value due to less dispersion
of the stable leading front
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Note: More significant reverse fingering at higher Peclet number stretches the thickness of
layer upstream. On the other hand the stronger diffusion at lower Peclet number increases the
thickness of dispersion area on the leading front. Even though the growth of mixing length
is higher for higher Peclet number, dependence is not very significant

However, maximum interfacial lengths are reached at about the same times,
reflecting that arrivals of the forward fingers to the leading front also take
nearly the same times for various Peclet numbers. This fact is also confirmed
by the very close growth rates of dispersion lengths for different Pe-value at
earlier times.
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Figure 11.
Re =-25and W=0.125

Figure 12.
R=-25and W=0.125.
The temporal evolution
of dispersed layer width
W (#) for Pe = 1,000
(dash); 2,000 (bold);
4,000 (dot) and 6,000
(dash-dot)
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The temporal evolution
of interfacila length L(f)
for Pe = 1,000 (dash);
2,000 (bold); 4,000 (dot)
and 6,000 (dash-dot)

Note: Interfacial lengths are found higher at larger displacing rates because of more vigorous
fingerings and less mixings. However, maximum interfacial lengths are reached at about the
same times that indicates the arrivals of forward fingers to the leading front at nearly the same
times for different Peclet numbers

IV. Conclusions

We have presented the numerical simulations of miscible displacement for a
finite more viscous layer confined by the less viscous fluids by means of
highly accurate numerical schemes. Vigorous fingering instability is
triggered on the upstream front due to the unfavorable viscosity ratio locally,
and the downstream contacting front remains stable as expected. The
influences of finite thickness lead to the reorientation of fingering formation.
While at early stage, the fingers have not yet fully arrived the stable leading
front (similar to the conventional fingering investigations for semi-infinite
more viscous fluids) the fingers travel forward with the features of rounder
frontal shapes. The vorticity contours appear dipole pairs with similar shapes
to the concentration fingers and local vorticity peaks locate on the tip area. A
double eddy formation facing downstream is observed to accelerate the
fingers movement. However, the growth of fingers is suppressed once most of
the fingers have caught up the stable front. These forward fingers can never
break through the resistance of stable front and are forced to redirect. Reverse
fingers, similar to Manickam and Homsy (1993, 1994, 1995) are observed. The
stable leading front associated with growth of reverse fingers stretch the
length of the layer significantly. Similar results are also found in the radial
flow fields, in spite of continuous thinning effect to the thickness of annulus
due to the radial transportation.
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